CHD1 loss sensitizes prostate cancer to DNA damaging therapy by promoting error-prone double-strand break repair

Tanu Shenoy1, Gunther Boysen1, Mengyao Wang2, Qinzheng Xu2, Weilong Guo2, Liuwen Zhang2, Ying Wang3, Chun Wang3, Veronica Gil3, Sara Aziz3, Rossitsa Christova3, Daniel Nava Rodrigues3,4, Mateus Crespo3,4, Pasquale Rescigno3,5, Nina Tunariu1, Ruth Riisnaes3,4, Zafeiris Zafeiriou4, Penny Flohr3,4, Wei Yuan1, Eleanor Knight1, Amanda Swain5, Miguel Ramalho-Santos6, Dongyi Xu2, Johann de Bono3,4 and Hong Wu1,2

1Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA; 2The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; 3The Institute of Cancer Research, 123 Old Brompton Road, London, UK; 4Prostate Cancer Targeted Therapy Group and Drug Development Unit, The Royal Marsden NHS Foundation Trust; 5Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research and Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, 35 Medical Center Way, University of California, San Francisco, CA 94143, USA.

Background
Homzygous deletion of the chromatin remodeler CHD1 is a common structural alteration found in the human prostate cancer genome. CHD1 deleted tumors are characterized by high numbers of intrachromosomal rearrangements suggesting underlying defects in DNA double-strand break (DSB) repair. Here we investigate whether this subclass of prostate cancer has a defective DNA damage repair, is sensitive to DNA damaging compounds and whether this genomic alteration could be used as biomarker to stratify patients.

Methods
To study the role of CHD1 deletions in vivo and in vitro we developed a novel genetically engineered mouse model with prostate-specific loss of Chd1, CRISPR/CAS9 engineered human prostate cancer cells with loss of CHD1 as well as patient-derived organoids (PDOs) with and without CHD1 deletions. We evaluated the effect of the deletion in these models on DNA DSB repair competence, global chromatin structure, cell cycle regulation and drug sensitivity (carboplatin, olaparib, irradiation). Finally, we treated a CHD1 deleted castration-resistant prostate cancer (CRPC) patient with carboplatin.

Results
Here we show that CHD1 loss causes increased sensitivity to irradiation-mediated DNA damage in mES cells and the mouse prostate. It is also synthetic lethal with DNA damaging agents such as carboplatin or olaparib. We confirmed these responses in preclinical human models with CHD1 loss and in a patient with CRPC. Mechanistically, CHD1 maintains euchromatin, binds components of the DNA damage repair machinery and regulates stability of 53BP1. Thereby, CHD1 controls the choice between error-free and error-prone DNA double-strand break repair. Loss of CHD1 increases heterochromatin formation, impairs error-free homologous recombination (HR) mediated DNA double-strand break and causes a cellular dependence on error-prone non-homologous end joining (NHEJ). We validated these findings clinically in a CHD1 deleted CRPC patient, whose PDO was sensitive to PARP-1 inhibition. The patient showed a radiological response accompanied with dramatic decreases in PSA and circulating tumor cell counts.

Conclusions
In summary, we report that CHD1 loss leads to changes in DNA damage response. Importantly, CHD1 loss is associated with an increased sensitivity to PARP inhibition and anticancer drugs that induce DNA intercross-strand links including carboplatin.

Funding
This work was supported by Prostate Cancer Foundation (HW), Peking-Tsinghua Center for Life Science (HW), grants from NIH (P50 CA092131, R01 CA107166, R01 CA121110, and U01 CA164188 to HW and R01GM113014 to MR-S), a Prostate Cancer UK project grant (PG13-036) (JDB), a Movember Prostate Cancer UK Programme Grant to the London Prostate Cancer Centre of Excellence (JDB), a Cancer Research UK Centre Grant (JDB), an ECMC grant (JDB), a Royal Marsden Biomedical Research Centre flagship grant (JDB), Presidential Fellowship of Peking University (MYW), a Marie Sklodowska-Curie Fellowship (GB) and a general financial grant form the China Postdoctoral Science Foundation (WLG).