N-Myc induces an EZH2-mediated transcriptional program driving Neuroendocrine Prostate Cancer

Etienne Dardenne1, Himisha Beltran2,3,4, Matteo Benelli5, Kaitlyn Gayvert6,7, Adeline Berger1, Loredana Puca4, Joanna Cytra1,4, Andrea Sboner1,4,6,7, Zohal Noorzaei1, Theresa MacDonald1, Cynthia Cheung1, Ka Shing Yuen1, Dong Gao8, Johannes H. Schulte9, Yu Chen1,8,10, Martin Eilers11, Juan-Miguel Mosquera1,4, Brian D. Robinson1,4, Olivier Elemento1,4,6, Mark A. Rubin1,2,4,6, Francesca Demichelis1,5 and David S. Rickman1,2,4,8

1Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065. 2Meyer Cancer Center, Weill Cornell Medicine, New York, New York, 10065. 3Department of Medicine, Weill Cornell Medicine, New York, New York, 10065. 4Englander Institute for Precision Medicine, Weill Cornell Medicine and New York-Presbyterian Hospital, New York, NY, 10065. 5Centre for Integrative Biology, University of Trento, Trento, 38123, Italy. 6Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065. 7Tri-Institutional Training Program in Computational Biology and Medicine, New York, NY 10065. 8Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065. 9Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany 10Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, 10065. 11Department of Pediatric Oncology and Hematology, University Children's Hospital Essen, Essen, Germany 12Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany.

The transition from castration resistant prostate adenocarcinoma (CRPC) to neuroendocrine prostate cancer (NEPC) has emerged as an important mechanism of treatment resistance. This cell plasticity is characterized by loss of androgen receptor (AR) and prostate specific antigen (PSA), and significant over-expression and gene amplification of MYCN (encoding N-Myc) and AURKA (Encoding Aurora-A). N-Myc is an established oncogene in several rare pediatric tumors, but its role in prostate cancer progression is not well established.

Integrating a genetically engineered mouse model and human prostate cancer transcriptome data, we show that N-Myc over-expression leads to the development of poorly differentiated, invasive prostate cancer that is molecularly similar to human NEPC. This includes an abrogation of AR signaling and induction of Polycomb Repressive Complex 2 signaling. We demonstrate that N-Myc over-expression sensitizes cells to the allosteric Aurora-A inhibitor MLN8237 and EZH2 SET domain inhibitors. In addition we identify new lead small molecules that target the N-Myc/Aurora-A protein complex to diminish the aggressive nature of this cancer type. Altogether, our data establishes N-Myc as an oncogenic driver of NEPC.

Since transformation of NEPC is thought to develop in the face of hormonal therapy there is concern that with the clinical development of more potent and earlier AR targeted therapeutic strategies, the incidence of AR-negative NEPC will escalate. Therefore, small molecules identified in this study will potentially impact significantly more prostate cancer patients than previously appreciated in addition to fulfill an unmet clinical need for patient with NEPC.

Funding Acknowledgements:
This study was supported by the Prostate Cancer Foundation (PCF) Challenge award (D.S.R., M.E., H.B., M.R., O.E.), the National Institutes of Health (1R01CA179100-01A1) (D.S.R., O.E., J.M.M., H.B.). This study was also supported in part by the Damon Runyon Cancer Research Foundation Clinical Investigator Award CI-67-13 (H.B.), Department of Defense PC121341 (H.B.), Early Detection Research Network NCI U01 CA111275 (J.M.M. and M.A.R.), European Research Council ERCCoG648670 (F.D.) and by the Translational Research Program at WCM Pathology and Laboratory Medicine and a fellowship from the PhRMA Foundation (K.G.).

There is no conflict of interest.