Rb1 Suppresses Prostate Cancer Metastasis and Lineage Plasticity Underlying Castration Resistance

Sheng Yu Ku1*, Spencer Rosario1*, Yanqing Wang1, Ping Mu4, Mukund Seshadri1, Zachary W. Goodrich1, Maxwell M. Goodrich1, Eduardo Cortes Gomez2, Jianmin Wang2, Bo Xu3, Charles L. Sawyers4,5, Leigh Ellis1#, David W. Goodrich1#

1Department of Pharmacology & Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263
2Department of Biostatistics & Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY 14263
3Department of Pathology, Roswell Park Cancer Institute, Buffalo, NY 14263
4Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
5Howard Hughes Medical Institute

*Equal Contribution
#Co-corresponding authors

Background: Lethal neuroendocrine prostate cancer variants increasingly arise in patients relapsing from improved androgen deprivation therapies like enzalutamide. Underlying mechanisms are incompletely understood and experimental models are limited, hindering development of effective countermeasures.

Methods: We used genetically engineered mouse models with specific prostate deletion of Pten and/or Rb1. Aging, castration and gene expression studies were performed to investigate the contribution of Rb1 deletion in combination with Pten deletion. We further conducted combination preclinical therapy studies based on our findings.

Results: We find Rb1 and Pten loss in the mouse causes metastatic prostate adenocarcinoma with lineage plasticity and neuroendocrine transformation comparable to neuroendocrine variants arising in human patients. Additional Trp53 mutation drives resistance to androgen deprivation therapy. Neuroendocrine transformation is accompanied by increased expression of epigenetic reprogramming factors like Sox2 and Ezh2. Clinically relevant Ezh2 inhibitors reverse lineage transformation and restore sensitivity to enzalutamide.

Conclusions: These findings uncover genetic mutations driving prostate cancer lineage plasticity and suggest an epigenetic approach for extending the beneficial clinical responses of androgen deprivation therapy.

Funding
PCF YI Award

Conflict of Interest
N/A