

Investigating the role of androgen receptor acetylation in castrate-resistant prostate cancer

Erin Heine, Matthew Schiewer, Victoria Nolte, Diane E. Merry, Scott Dehm, Karen E. Knudsen and Heather L. Montie

Department of Biochemistry and Molecular Biology, Departments of Cancer Biology, Urology and Radiation Oncology, Thomas Jefferson University and Kimmel Cancer Center, Philadelphia, PA; Department of Laboratory Medicine and Pathology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN; Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA

Background

Androgen receptor (AR) lysine residues 630/632/633 are acetylated in response to androgen-binding. An AR mutation that mimics this modification occurs in a subset of prostate cancer patients (K630T). Increased levels of AR acetyltransferases have also been observed in some advanced cases. We hypothesize that acetylation contributes to aberrant AR activation in castrate-resistant prostate cancer, contributing to tumor growth and viability. The goal of our studies is to understand the role of AR acetylation in castrate-resistant prostate cancer.

Methods

We are utilizing genetic and pharmacologic approaches to determine the function of AR acetylation in castrate-resistant disease, both in cell culture and in vivo models. We have generated C4-2 cell lines within which we have stably knocked down endogenous AR (shRNA) and expressed acetylation-mutant AR (acetylation-null, acetylation-mimic, or lysine-intact controls). We have evaluated the effect of AR acetylation on castrate-resistant cell growth in culture and tumor growth in vivo. Microarray analysis of cultured cells has been performed to investigate transcriptomic changes that occur when AR acetylation is blocked.

Results

AR acetylation modulated growth of castrate-resistant prostate cancer cells in culture and in vivo. Acetylation-null AR expressing C4-2 cells had a substantially reduced growth rate in culture, and this growth pattern was replicated in xenograft tumors. Moreover, mice injected with these cells had a substantially reduced tumor take. Acetylation-mimic AR-expressing cells have a growth advantage over controls in culture, and, in castrated mice, these xenograft tumors grew faster than controls. Microarray analysis revealed gene expression changes in a number of cellular pathways in acetylation-null AR-expressing C4-2 cells. Both pharmacologic activation of an AR deacetylase and pharmacologic inhibition of an AR acetyltransferase reduced growth and induced death of C4-2 cells.

Conclusions

Our data indicate that AR acetylation plays a critical role in castrate-resistant disease. They also suggest that targeting the enzymes responsible for AR acetylation is a viable means to treat castrate-resistant disease. Further studies targeting these enzymes in vivo are warranted. Whether AR acetylation is a driver of castrate-resistant disease is still an open question that we are working to answer.

Conflicts of interest:

None to report

Funding sources:

Prostate Cancer Foundation Young Investigator Award (John Moran) (to HLM)
Philadelphia College of Osteopathic Medicine Division of Research funds (to HLM)