Targeting the druggable interaction between the N-terminal domain of the androgen receptor (AR) and BAG-1L, a key regulator of AR function.

Laura Cato¹, Antje Neeb², Adam Sharp³, Victor Buzon³, Xavier Salvatella³, Stephen Plymate⁴, Andrew C. B. Cato⁵, Johann de Bono² and Myles Brown¹.

¹Dana-Farber Cancer Institute and the Center for Functional Cancer Epigenetics, Boston, MA, USA
²The Institute of Cancer Research and The Royal Marsden Hospital, Sutton, UK
³Institute for Research in Biomedicine, Barcelona Spain
⁴University of Washington School of Medicine and VAPSHCS-GRECC, Seattle, WA, USA
⁵Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany

Background:

Progression to lethal castration resistant prostate cancer (CRPC) is associated with ongoing androgen receptor (AR) signaling, due in part to constitutively active AR splice variants (AR-SV) of which AR-V7 is the best studied. Expression of AR-V7 confers resistance to current therapies and correlates with shorter survival from CRPC. Targeting the AR activation function 1 (AF-1) domain, a key regulatory domain of AR, is an attractive therapeutic strategy and may be achieved by disrupting its interaction with key regulatory proteins that bind AR AF-1 (common to nearly all AR-SV), such as the co-chaperone BAG-1L. BAG-1L belongs to a family of proteins with four isoforms in humans (BAG-1L, BAG-1M, BAG-1 and BAG-1S). These proteins differ in their N-terminal sequences but have a conserved C-terminal BAG domain. BAG-1L possesses a nuclear localization sequence in its unique N-terminus. BAG-1L, but not the other BAG-1 proteins, enhances the transactivation function of AR. We have shown that BAG-1L may be a promising target to abrogate oncogenic AR signaling in prostate cancer.

Results (and Methods):

We show using immunohistochemistry that AR and AR-V7 expression increases as patients progress from hormone-sensitive prostate cancer (HSPC) to CRPC. Additionally, nuclear AR-V7 increases as patients develop resistance to abiraterone and is associated with poor overall survival. Similarly, nuclear BAG-1L levels increase as patients progress to CRPC and associate with response to abiraterone therapy. Consistent with these findings, overexpression of BAG-1L accelerates progression to CRPC in mouse xenograft models. To investigate the effect of BAG-1L loss in prostate cancer we have developed a Transcription Activator-Like Effector Nuclease (TALEN) BAG-1L specific knockout (KO) model in LNCaP cell line. ChIP-seq experiments demonstrate that BAG-1L regulates the AR cistrome and RNA-seq confirmed that AR target gene expression is dependent on the presence of BAG-1L. These data implicate BAG-1L as a critical coregulator of AR. Using HSQC NMR we have demonstrated that BAG-1L binds the Tau5 region of the AR N-terminus through its highly conserved C-terminal BAG domain. Mutations within the BAG domain disrupt the BAG-1L:AR interaction and inhibit BAG-1L-mediated AR transactivation. Interestingly, the BAG domain of BAG-1L is predicted to be druggable and these mutations lie within this cavity suggesting that the identification of small molecule compounds that bind this cavity may abrunt BAG-1-mediated AR activation.

Conclusions

Here we provide preliminary evidence that targeting the interaction between BAG-1L and AF-1 provides a novel therapeutic strategy to overcome oncogenic AR signaling (through both full length AR and AR-SV) in castration resistant prostate cancer.

Conflict of Interests Statement
The authors declare no conflict of interests

Funding

Prostate cancer foundation, Department of Defense, Medical Research Council, Academy of Medical Sciences, Prostate Cancer UK, Claudia Adams Barr Program in Cancer Research, National Institutes of Health.