Activation of Notch1 synergizes with multiple pathways in promoting castration-resistant prostate cancer

Stoyanova T1-2, Riedinger, M4, Lin S3, Faltermeier C2, Smith BA2, Zhang Kx5, Going CC1, Goldstein AS3,8, Lee JK6, Drake JM4-10, Rice MA1, Hsu EC1, Nowroozizadeh B6,12, Castor B7, Orellana SY5, Blum S2,13, Cheng D8, Pienta KJ11, Reiter RE3, Pitteri SJ1, Huang J7,14 and Witte ON2,4,8,9

Affiliations:
1Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA
2Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA
3Department of Urology, University of California, Los Angeles, CA
4Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA
5Department of Biological Chemistry, University of California, Los Angeles, CA
6Division of Hematology and Medical Oncology, University of California, Los Angeles, CA
7Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA
8Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA
9Howard Hughes Medical Institute
10Rutgers Cancer Institute of New Jersey and Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ
11Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD
12Department of Pathology, University of California, Irvine, CA
13Department of Internal Medicine, Brigham and Women's Hospital, Boston, MA
14Department of Pathology, Duke University School of Medicine, Durham, NC

Background: Metastatic castration-resistant prostate cancer (CRPC) is the primary cause of prostate cancer specific mortality. Thus, identifying new mechanisms that drive lethal CRPC is critical. These mechanisms can give us insights into novel therapeutic targets and strategies for CRPC. Here, we set to determine the role of Notch1 receptor in prostate tumorigenesis.

Methods: To evaluate the role of Notch receptors in prostate tumorigenesis, we used human tissue microarrays (TMAs) and tissue regeneration model using naive mouse prostate epithelial cells.

Results: Our study demonstrates that localized high-risk prostate cancer and metastatic CRPC but not benign prostate tissues or low/intermediate-risk prostate cancer express high levels of Notch1 receptor intracellular domain (NICD1). Chronic activation of Notch1 synergizes with multiple oncogenic pathways altered in early disease to promote the development of prostate adenocarcinoma. These tumors display features of epithelial to mesenchymal transition, a cellular state associated with increased tumor aggressiveness. Consistent with its activation in clinical CRPC, tumors driven by NICD1 in combination with multiple pathways altered in prostate cancer are metastatic and resistant to androgen deprivation.

Conclusion: Our study provides functional evidence that the Notch1 signaling axis synergizes with alternative pathways in promoting metastatic CRPC, and may represent a new therapeutic target for advanced prostate cancer.

Conflict of Interest: None

Funding Acknowledgements:
Stewart Rahr Prostate Cancer Foundation Young Investigator Award
R00 Pathway to Independence Award. National Institute of Health