Phosphoproteome Integration Reveals Patient-Specific Networks in Prostate Cancer

Justin M. Drake\(^{a,n,*}\), Evan O. Paull\(^{m,*}\), Nicholas A. Graham\(^{b,c,o}\), John K. Lee\(^{d,e}\), Bryan A. Smith\(^{a}\), Bjoern Titz\(^{b,c}\), Tanya Stoyanova\(^{b,f}\), Claire M. Faltermeier\(^e\), Vladislav Uzunangelov\(^{m}\), Daniel E. Carlin\(^{m,q}\), Daniel Teo Fleming\(^{m}\), Christopher K. Wong\(^{m}\), Yulia Newton\(^{m}\), Sud Sudha\(^{l}\), Ajay A. Vashisht\(^f\), Jiaoti Huang\(^{a,h,k}\), James A. Wohlschlegel\(^{l}\), Thomas G. Graeber\(^{b,c,g,i}\), Owen N. Witte\(^{a,c,j,k,1}\), & Joshua M. Stuart\(^{m,1}\)

\(^{a}\)Department of Microbiology, Immunology, and Molecular Genetics, \(^{b}\)Crump Institute for Molecular Imaging, \(^{c}\)Department of Molecular and Medical Pharmacology, \(^{d}\)Division of Hematology and Oncology, Department of Medicine, \(^{e}\)Molecular Biology Institute, \(^{f}\)Department of Biological Chemistry, \(^{g}\)Jonsson Comprehensive Cancer Center, \(^{h}\)Department of Pathology and Laboratory Medicine, \(^{i}\)California NanoSystems Institute, and \(^{j}\)Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, CA 90095; \(^{k}\)Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095; \(^{l}\)Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109. \(^{m}\)Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064. \(^{n}\)Rutgers Cancer Institute of New Jersey and Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, 08903. \(^{o}\)Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089. \(^{p}\)Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, Palo Alto, CA 94304. \(^{q}\)Department of Medicine, University of California, San Diego, CA 92093.

*Authors contributed equally to this work.

1To whom correspondence should be addressed:
Joshua M. Stuart: jstuart@ucsc.edu; Owen N. Witte: owenwitte@mednet.ucla.edu; Justin M. Drake: justin.drake@cinj.rutgers.edu

ABSTRACT

Background: We set out to define the global picture of signaling pathways in lethal prostate cancer through dataset integration. **Methods:** We developed a complete and extensive new dataset of the phosphoproteome in metastatic CRPC by extending our analysis to phosphoserine and phosphothreonine peptides and then combining this information with our previously published phosphotyrosine peptide data (Drake et al., 2013). We used clinical tissue from lethal metastatic castration resistant prostate cancer (CRPC) patients obtained at rapid autopsy to evaluate diverse genomic, transcriptomic, and phosphoproteomic datasets for pathway analysis. Using Tied Diffusion through Interacting Events (TieDIE), we integrated differentially expressed master transcriptional regulators, functionally mutated genes, and differentially activated kinases in CRPC tissues to synthesize a robust signaling network consisting of druggable kinase pathways. We introduce a new tool called phosphorylation-based cancer hallmarks using integrated personalized signatures (pCHIPS) to establish patient-specific pathways marking key signaling events for possible targeting. **Results:** Using MSigDB hallmark gene sets, six major signaling pathways with phosphorylation of several key residues were significantly enriched in CRPC tumors after incorporation of phosphoproteomic data. Individual autopsy profiles developed using these hallmarks revealed clinically relevant pathway information potentially suitable for patient stratification and targeted therapies in late stage prostate cancer. Here we describe phosphorylation-based cancer hallmarks using integrated personalized signatures (pCHIPS) that sheds light on the
diversity of activated signaling pathways in metastatic CRPC while providing an integrative, pathway-based reference for drug prioritization in individual patients. **Conclusions:** We found cases in which different hallmarks were implicated with the patient-specific networks compared to using only the mutational information. Seven hallmarks were concordant across the patients, seven were discordant, and five agreed in a subset of patients. In addition, we used models derived from cell lines to investigate whether the presence of mutations or inferred activated kinases were more informative about drug sensitivity. The inferred phospho-based activities were as indicative of drug response as the presence of somatic mutations in those pathways and, when averaged across pathways and cell lines, these data suggest one type of data is sufficient to implicate pathway targets. Thus, for an individual patient afflicted with a tumor that lacks mutations in known actionable pathways, phosphoproteomic data could be informative to prioritize treatment.

CONFLICT OF INTEREST STATEMENT
The authors declare no conflicts of interest.

FUNDING ACKNOWLEDGEMENTS
We thank members of the O.N.W. and J.M.S. laboratories for helpful comments and discussion on the manuscript and the University of Michigan for supplying material from their rapid autopsy program. J.M.D. is supported by the Department of Defense Prostate Cancer Research Program W81XWH-14-1-0148 and Prostate Cancer Foundation Young Investigator Award; N.A.G. is supported by UCLA Scholars in Oncologic Molecular Imaging (SOMI) program, NIH grant R25T CA098010; J.K.L. is supported by Specialty Training and Advanced Research (STAR) Program at UCLA, Prostate Cancer Foundation Young Investigator Award, and Tower Cancer Research Foundation Career Development Award; B.A.S. is supported by UCLA Tumor Immunology Training Grant #T32 CA009120; T.S. is supported by Prostate Cancer Foundation Young Investigator Award National Institute of Health/National Cancer Institute K99 Pathway to Independence Award 4R00CA184397; C.M.F. is supported by the UCLA Medical Scientist Training Program; J.H. is supported by NIH grants 5R01CA172603-02, 2P30CA016042-39, 1R01CA181242-01A1, 1R01CA195505, the Department of Defense Prostate Cancer Research Program W81XWH-12-1-0206, UCLA SPORE in prostate cancer, Prostate Cancer Foundation Honorable A. David Mazzone Special Challenge Award, and UCLA Jonsson Comprehensive Cancer Center Impact Grant; J.A.W. is supported by NIH GM089778; T.G.G. is supported by the NCI/NIH P01 CA168585, an American Cancer Society Research Scholar Award RSG-12-257-01-TBE, the CalTech-UCLA Joint Center for Translational Medicine, the UCLA Jonsson Cancer Center Foundation, the National Center for Advancing Translational Sciences UCLA CTSI Grant UL1TR001214, and a Concern Foundation CONquer CanCER Now Award; J.M.S. is supported by NCI/NIH U24-CA143858, NCI/NIH 1R01CA180778, NHGRI/NIH 5U54HG006097, and NIGMS/NIH 5R01GM109031 grants; O.N.W. is an Investigator of the Howard Hughes Medical Institute and supported by a Prostate Cancer Foundation Challenge Award. J.H., T.G.G., J.M.S., and O.N.W. are supported by the West Coast Prostate Cancer Dream Team supported by Stand Up to Cancer/AACR/Prostate Cancer Foundation SU2C-AACR-DT0812 (O.N.W. co-PI). This research Grant is made possible by the generous support of the Movember Foundation. Stand Up To Cancer is a program of the Entertainment Industry Foundation administered by the American Association for Cancer Research.