Systemic administration of CpG-STAT3 antisense oligonucleotides induces regression of two bone-localized prostate tumor models

Dayson Moreira¹, Haejung Won¹, Xingli Zhao¹, Tomasz Adamus¹, Xin Lu⁴, Piotr Swiderski², Sumanta K. Pal³, and <u>Marcin Kortylewski¹</u>

¹Department of Immuno-Oncology; ²DNA/RNA Synthesis Core Laboratory; ³Medical Oncology and Experimental Therapeutics; Beckman Research Institute at City of Hope, Duarte, CA, USA; ⁴Department of Biological Sciences, University of Notre Dame, IN, USA.

Background: Signal Transducer and Activator of Transcription 3 (STAT3) is an oncogenic transcription factor, which plays important role in both prostate cancer progression and in sustaining immune-suppression in the tumor microenvironment. We previously demonstrated that Toll-like Receptor 9 (TLR9) ligands allow for targeted delivery of oligonucleotides to TLR9⁺ cells in prostate tumors, such as cancer stem-like cells and tumor-associated myeloid immune cells.

Methods: Here, we describe new strategy to deliver nuclease-resistant STAT3 antisense oligonucleotides (ASO) to bone-localized prostate cancer. Tethering TLR9 agonist (CpG-ODN) to STAT3 ASO permits internalization of the CpG-STAT3ASO conjugate by TLR9⁺ human and mouse cells without transfection reagents.

Results: We demonstrate that CpG-STAT3ASO is internalized by polymorphonuclear myeloid-derived suppressor cells (PMN-MDCSs) derived from blood of prostate cancer patients, as well as human (DU145, PC3) and mouse (Myc-CaP, RM9) prostate cancer cells. Compared to the STAT3ASO alone, CpG-STAT3ASO had improved potency and accelerated kinetics of target gene knock down at mRNA and protein levels. The biodistribution studies in mice showed that systemic *i.v.* injections of CpG-STAT3ASO^{Cy3} effectively targeted prostate tumor-associated myeloid cells, such as dendritic cells and macrophages. For efficacy studies, we used two genetically different models of mouse castrationresistant prostate tumors implanted intratibially: Ras-/Myc-driven RM9 and Ptenpc-/-Smad4pc-/-Trp53c-/-(PST). Repeated *i.v.* injections of unformulated CpG-STAT3ASO (5 mg/kg/every other day), but not the unconjugated CpG ODN or STAT3ASO alone, induced regression of bone-localized tumors in the majority of treated mice independently from cancer genetics. Antitumor effects of CpG-STAT3ASO resulted primarily from the potent immune responses and thus were not observed in immunodeficient NSG mice. In immunocompetent mice, CpG-STAT3ASO treatment reduced STAT3 activity in both cancer cells and in tumor-associated immune cells, thereby reducing PD-L1 levels on CD11b+Gr1+ MDSCs together with the percentage of CD4+FoxP3+ regulatory T cells. Our ex vivo studies on CRPC patients' derived PMN-MDSCs support translational potential of this approach. In contrast to CpG ODN and STAT3ASO alone, CpG-STAT3ASO conjugate reduced immunosuppressive potential of primary PMN-MDSCs, thereby restoring proliferation and activity of co-cultured T cell.

Conclusions: By targeting STAT3 mainly in the prostate tumor microenvironment, CpG-STAT3ASO provides broader and more efficient strategy for the treatment of genetically diverse metastatic prostate cancers.

The authors declare no conflict of interests.

This work was supported in part by the Department of Defense, Prostate Cancer Program award number W81XWH-15-PCRP-IDA and STOP-CANCER Foundation (M.K.).