Targeting the co-chaperone Bag-1L as a new strategy to inhibit the N-terminal AF-1 domain of the androgen receptor in castration resistant prostate cancer

Antje Neeb, Adam Sharp, Laura Cato, Bissan Al-Lazikani, Simone Graessle, Ruth Riisnaes, Daniel Nava Rodrigues, Ines Figueiredo, Gunther Boysen, Veronica Gil, Jaice Rottenberg, Jon Welti, Nane Kuznik, Frieder Fauser, Tii Seime, Jian Ning, Amanda Swain, Jacob Troppmair, Holger Puchta, Nicole Jung, Stefan Braese, Stephen R. Plymate, Myles Brown, Andrew C. B. Cato and Johann de Bono

1 Institute of Cancer Research, London, UK; 2 Dana-Farber Cancer Institute and Harvard Medical School, Boston, USA; 3 Karlsruhe Institute of Technology, Karlsruhe, Germany; 4 University of Washington Seattle, Seattle, USA; 5 Innsbruck Medical University, Innsbruck, Austria

Background: Persistent androgen receptor (AR) signaling is key for the development and progression of metastatic castration-resistant prostate cancer (mCRPC). This is in part due to expression of constitutively active AR splice variants (AR-SV) of which AR-V7 is the best studied. Currently, there are no approved therapies targeting AR-V7, the lack thereof remains a critically important, unmet medical need. An attractive strategy for targeting AR-V7 and AR is inhibiting the N-terminal Activation Function (AF)-1 domain. Due to its intrinsically disordered structure, AF-1 is a therapeutically challenging target. Co-activators that exhibit chaperone activity and bind the AF-1, such as the HSP70/HSC70 co-chaperone and AR co-activator Bag-1L, are promising targets for the development of novel prostate cancer therapies.

Methods: Results were achieved using immunohistochemistry (IHC) and modern molecular technologies in prostate cancer cell lines and patient derived organoid models.

Results: IHC studies of patient biopsies demonstrate that nuclear AR-V7 and Bag-1L expression increase as patients develop advanced treatment resistant prostate cancer. We have shown that Bag-1L binds to the AR through its conserved C-terminal Bag domain in prostate cancer cells. Using canSAR (drug discovery knowledgebase) we have identified a druggable cavity within the Bag domain of Bag-1L. Mutations within and around this cavity disrupt the Bag-1L:AR interaction and abrogate Bag-1L mediated AR activity in prostate cancer cells. Moreover, we have shown that the small molecule Thio-2, disrupts the interaction between Bag-1L and AR AF-1 and inhibits BAG-1L mediated AR AF-1 activation and prostate cancer cell growth in a ligand independent way. Furthermore, Thio-2 demonstrates growth inhibitory effects in patient derived organoids and xenografts from metastatic CRPC biopsies resistant to enzalutamide.

Conclusions: We conclude that Bag-1L is essential for AR function and plays a critical role in regulating AR-V7 activity in CRPC. Targeting Bag-1L is therefore a potential novel therapeutic strategy to overcome oncogenic AR signaling in CRPC.

Funding: Prostate Cancer Foundation Challenge Award, Department of Defense, Medical Research Council, Academy of Medical Sciences, Prostate Cancer UK, National Institutes of Health.

The authors declare no conflict of interests.