Profiling Anti-tumor Immunity in High-Risk Localized Prostate Cancer after Treatment Targeting the B7-H3 Checkpoint

Eugene Shenderov1, Karim Boudadi1, Angelo DeMarzo1, Tamara Lotan1, Mohamad E Allaf1, Onur Ertunc1, Igor Vidal1, Carolyn Chapman1, Hao Wang1, Jim Vasselli2, Jon Wigginton2, Jan Davidson2, Paul Moore2, Francine Chen2, Rehab Abdallah1, Tanya O’Neal1, Christian Pavlovich3, Trinity Bivalacqua3, Ashley E. Ross3, Charles G. Drake1,3, Drew Pardoll1 & Emmanuel S. Antonarakis1

1Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University; 2MacroGenics, Inc.; 3James Buchanan Brady Urological Institute at Johns Hopkins University

Background: While CTLA-4 and PD-L1 are infrequently expressed in PCa, B7-H3 (another B7 superfamily member) is highly expressed in many PCAs, may modulate anti-tumor immune responses, and is associated with worse prognosis. Binding B7-H3 is now clinically possible with the recent development of enoblituzumab (MacroGenics), a humanized Fc-optimized (for antibody-dependent cell-mediated cytotoxicity [ADCC]) monoclonal antibody that binds B7-H3 with high affinity and specificity. Here we describe a study to test the hypothesis that neoadjuvant enoblituzumab treatment in patients with localized PCa will lead to partial pathological responses and reduced biochemical recurrence following prostatectomy, initially by modulating T cell immunity in the tumor microenvironment (TME) and also through direct tumor killing via ADCC.

Methods: Thirty two (32) men with intermediate- and high-risk localized prostate cancer (Gleason sum 7-10) were consented on an IRB-approved single-center, single arm, phase 2 study evaluating the safety, anti-tumor effect, and immunogenicity of neoadjuvant enoblituzumab given prior to radical prostatectomy at Johns Hopkins. Participants receive enoblituzumab at a dose of 15 mg/kg IV given weekly for 6 doses prior to radical prostatectomy. Two weeks after the last dose of enoblituzumab, prostates are harvested at radical prostatectomy, and examined for secondary and correlative endpoints.

Results: The trial has completed enrollment of 32 patients with clinical endpoints maturing and correlates being explored. Preliminary analysis using single and multiplexed protein IHC, compared to age- and stage-matched untreated prostatectomy controls, indicates statistically significant CD8 infiltration displaying Granzyme B upregulation, unchanged FOXP3+ infiltrate, and PD-L1 and PD-1 upregulation.

Conclusions: This study aims to explore the impact of B7-H3 blockade on PSA recurrence following prostatectomy and the effects on the prostate gland TME. The described finding of enhanced CD8 infiltration and Granzyme B activation with likely adaptive upregulation of PD-L1 and PD-1 suggests that Enoblituzumab alters the TME in a fashion that results in enhanced CD8+ T cell infiltration and activation – a hallmark of immunotherapy responsiveness.

Conflict of Interest: Francine Chen, Paul Moore, Jon Wigginton, and Jan Davidson-Moncada are employees of MacroGenics. All other authors report no conflict of interest.

Funding Acknowledgements: Investigator initiated study sponsored by MacroGenics, Inc. ES receives funding from ASCO CCF YIA, DoD Physician Training Award, and PCF YIA.