Detection and characterization of mismatch repair defective metastatic prostate cancer using circulating tumour DNA

Elie J. Ritch1†, Simon YF Fu2†, Cameron Herberts1†, Gang Wang2, Evan W Warner1, Elena Schönlau1, Sinja Taavitsainen1,3, Andrew Murtha1, Gillian Vandekerkhove1, Kevin Beja1, Yulia Loktionova1, Daniel Khalaf2, Ladan Fazli1, Igal Kushnir4,5, Cristiano Ferrario6, Sebastien J. Hotter7, Matti Annala1,3, Kim N Chi2,*, Alexander W Wyatt1*

1Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, British Columbia, Canada; 2Department of Medical Oncology, BC Cancer, British Columbia, Canada; 3Prostate Cancer Research Center, Faculty of Medicine and Life Sciences and BioMediTech Institute, University of Tampere, Tampere, Finland; 4The Ottawa Hospital Cancer Centre, University of Ottawa, Ottawa, ON, Canada; 5Sackler faculty of medicine, Tel Aviv University, Tel Aviv, Israel; 6Jewish General Hospital, McGill University, Montreal, QC, Canada. 7Juravinski Cancer Centre, Hamilton, ON, Canada. †co-first authors; *co-corresponding authors.

Background: DNA mismatch repair defects (MMRd) and tumor hypermutation are rare in metastatic prostate cancer. As such, the salient genomic and clinical features of this distinct disease subtype remain poorly characterized. Furthermore, since MMRd prostate cancers can respond to immune checkpoint inhibitors, there is an urgent need for practical MMRd detection tools.

Methods: We performed deep targeted sequencing of 1047 plasma cell-free DNA samples from patients with progressing metastatic prostate cancer. All hypermutated samples (>11 mutations per Mbp) and available archival tissue were also subjected to whole exome sequencing. In archival tissue, mismatch repair protein expression was assessed via immunohistochemistry (IHC).

Results: 665 samples from 434 patients had circulating tumor DNA (ctDNA) purity above 2% and were evaluable. 16 patients (3.7%) had MMRd etiology, evidenced by pathogenic alterations in MSH2, MSH6, or MLH1 and/or a combination of somatic hypermutation, microsatellite instability, and characteristic trinucleotide signatures. Tissue mismatch repair protein IHC confirmed ctDNA-based predictions in all available samples. Tumor suppressors such as PTEN, RB1, and TP53 were typically inactivated by mutation rather than copy number loss. Unlike mismatch repair intact prostate cancer, hotspot mutations in oncogenes such as AKT1, PIK3CA and CTNNB1 were common, and the AR ligand binding domain was mutated in 9/16 patients. We observed high intra-patient clonal diversity, evidenced by subclonal driver mutations and dynamic shifts in mutation allele frequency over time. MMRd patients had a worse clinical prognosis than mismatch repair intact prostate cancer.

Conclusions: MMRd metastatic prostate cancer is associated with oncogene activation and subclonal diversity, which may contribute to a clinically aggressive disposition. In patients with detectable ctDNA, panel-based cell-free DNA sequencing is a practical tool to prioritize this subtype for immunotherapy.

Potential conflicts of interest: S.Y.F. Fu reports receiving a travel grant from Roche; D. Khalaf reports receiving honorarium from Bayer; I. Kushnir reports receiving stock and other ownership interests from Teva; K.N. Chi reports receiving commercial research grants and honorarium from Astellas, Bayer, Janssen, Roche and Sanofi. A.W. Wyatt reports receiving commercial research grants and honorarium from Janssen. The other authors have declared no conflicts of interest

Funding: This work was supported by a Canadian Institutes of Health Research (CIHR) project grant (KC, AW), the Prostate Cancer Foundation (KC, AW), and Prostate Cancer Canada (KC, AW).